Antiendothelial cell antibodies mediate enhanced leukocyte adhesion to cytokine-activated endothelial cells through a novel mechanism requiring cooperation between Fc{gamma}RIIa and CXCR1/2.
نویسندگان
چکیده
Antiendothelial cell antibodies (AECAs) are commonly detectable in diseases associated with vascular injury, including systemic lupus erythematosus (SLE), systemic sclerosis, Takayasu arteritis, Wegener granulomatosis, Behçet syndrome, and transplant arteriosclerosis. Here, we explore the hypothesis that these antibodies might augment polymorphonuclear leukocyte (PMN) adhesion to endothelium in inflammation. Initially, we established that a mouse IgG mAb bound to endothelial cells (ECs) significantly increased PMN adhesion to cytokine-stimulated endothelium in an FcgammaRIIa-dependent manner. Neutralizing antibodies, and adenoviral transduction of resting ECs, demonstrated that the combination of E-selectin, CXCR1/2, and beta(2) integrins is both necessary and sufficient for this process. We observed an identical mechanism using AECA IgG isolated directly from patients with SLE. Assembled immune complexes also enhanced PMN adhesion to endothelium, but, in contrast to adhesion because of AECAs, this process did not require CXCR1/2, was not inhibited by pertussis toxin, and was FcgammaRIIIb rather than FcgammaRIIa dependent. These data are the first to demonstrate separate nonredundant FcgammaRIIa and FcgammaRIIIb-mediated mechanisms by which EC-bound monomeric IgG and assembled immune complexes amplify leukocyte adhesion under dynamic conditions. Furthermore, the observation that FcgammaRIIa and CXCR1/2 cooperate to enhance PMN recruitment in the presence of AECAs suggests a mechanism whereby AECAs may augment tissue injury during inflammatory responses.
منابع مشابه
Anti-endothelial cell antibodies mediate enhanced leukocyte adhesion to cytokine-activated endothelial cells through a novel mechanism requiring cooperation between FcγRIIa and CXCR1/2. Running Title: Anti-endothelial antibodies and leukocyte adhesion
Oliver J. Florey, Michael Johns, Olubukola O. Esho, Justin C. Mason, Dorian O. Haskard BHF Cardiovascular Medicine, National Heart and Lung Institute Imperial College London, Hammersmith Hospital Du Cane Road, London W12 ONN United Kingdom Authors contributions: OJF helped design the study and performed the research; MJ and OOE helped perform the research, JCM helped design the research, and DO...
متن کاملAssociation of FCγRIIA (CD32) polymorphism with susceptibility to brucellosis
Background: Brucellosis is the major bacterial zoonoses of global importance caused by Brucella spps. FCγRIIA receptor plays a central role in phagocytosis of IgG2-opsonized bacteria. FCγRIIA exhibits allelic polymorphisms with different capacities for binding IgG2 and phagocytosis. Cells expressing Fc γ RIIa-H131, bind more efficiently to complexes of IgG2 than those expressi...
متن کاملFractalkine and CX3CR1 Mediate a Novel Mechanism of Leukocyte Capture, Firm Adhesion, and Activation under Physiologic Flow
Leukocyte migration into sites of inflammation involves multiple molecular interactions between leukocytes and vascular endothelial cells, mediating sequential leukocyte capture, rolling, and firm adhesion. In this study, we tested the role of molecular interactions between fractalkine (FKN), a transmembrane mucin-chemokine hybrid molecule expressed on activated endothelium, and its receptor (C...
متن کاملPhysical proximity and functional interplay of PECAM-1 with the Fc receptor Fc gamma RIIa on the platelet plasma membrane.
We and others have recently defined that Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1/CD31) functions as a negative regulator of platelet-collagen interactions involving the glycoprotein VI/Fc receptor gamma chain (GPVI/FcR-gamma chain) signaling pathway.1,2 In this study, we hypothesized that PECAM-1 may be physically and functionally associated with Fc gamma RIIa on the platelet mem...
متن کاملO 7: KCNK2 Regulates the Nanoscale Formation of Immune Docking Structures on Brain Endothelial Cells Under Autoinflammatory Conditions
KCNK2 was previously shown to regulate immune-cell trafficking into the central nervous system (CNS). Kcnk2-/- mice demonstrated a more severe disease course in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, due to an increased immune-cell migration into the CNS. An upregulation of the cellular adhesion molecules ICAM1 and VCAM1 on brain endothelial cells in K...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 109 9 شماره
صفحات -
تاریخ انتشار 2007